Amelioration of activated macrophage-induced adhesion molecules production in

endothelial SEVC cells and endothelial permeability by Chlorella-11 peptide

J.-Y. Cherng¹, L.-C. Chen², S.-F. Liou³, C.-L. Chen³, S.-J. Chen³, Mei-Fen Shih³

¹Department of Biochemistry & Chemistry, National Chung Cheng University, Taiwan

²Department of Pharmacy, Taipei City Hospital, Taipei, Taiwan

³ Department of Pharmacy, Chia-Nan University of Pharmacy & Science, Taiwan

The inflammatory response in large vessels involves the up-regulation of vascular adhesion molecules such as vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule

(ICAM-1), and E-selectin. Inflammatory cytokines are thought to play important roles in the

development of atherosclerosis. Chlorella has been shown to suppress high fat diet-induced

atherosclerosis. In addition, Chlorella-11 peptide possesses strong anti-inflammatory effect.

The aim of this study is to investigate the possible preventing role of Chlorella-11 peptide on

pro-inflammatory cytokine-induced expression of vascular adhesion molecules and vascular

permeability. Endothelial SEVC cells were treated with conditioned culture media (norm cc al

culture media contains 50% of LPS-activated macrophage culture media, in which contained

TNF- α and IL-6) with and without high (0.038 mM) or low (0.009 mM) concentration of

Chlorella-11 peptide. Indomethacin (0.25 M) was used as a positive control. Productions of

VCAM-1, ICAM-1 and E-selectin, endothelin-1 gene expression and cell permeability were

monitored. Productions of ICAM-1, VCAM and E-selectin were all increased by the conditioned

culture media. The induction of E-selectin and ICAM-1 was significantly prevented by both

concentrations of Chlorella-11 peptide. The induced VCAM production and endothelin-1 gene

were only suppressed in high dose of Chlorella-11 peptide treated cells. Indomethacin was

only effectively in preventing the conditioned culture media-induced ICAM production. Cell

permeability was also increased in the presence of conditioned culture media. The increased permeability was inhibited by Chlorella-11 peptide in a dose-dependent manner. These data

indicate that Chlorella-11 peptide can be a potential material in preventing chronic

inflammatory-related vascular diseases.

Title: AMELIORATION OF ACTIVATED MACROPHAGE-INDUCED ADHESION

MOLECULES PRODUCTION IN ENDOTHELIAL SEVC CELLS AND

ENDOTHELIAL PERMEABILITY BY CHLORELLA-11 PEPTIDE

Abstract-No: A-437-0003-00011

Created: 24.09.2011 06:09:26

Status: Submitted

Abstract Status:

Abstract Body

Author Data